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Abstract

A model for the behavior of fission gas in irradiated amorphous materials is developed. The model proposes that gas

bubble nucleation occurs within shear bands initiated around free volume regions. Small gas–atom clusters that form

within these regions are susceptible to dissolution by forces generated by the plastic flow of material around the cluster.

The bubble coarsening process depends on the materials viscosity and on irradiation-induced re-solution. The bubble

distribution eventually reaches a point where larger bubbles from the tail of the evolving lognormal size distribution

begin to contact the more numerous nanometer-sized bubbles from the peak region. This condition defines the knee in

the swelling curve. The fission density at which the knee occurs is a function of fission rate. Calculations for the

behavior of the knee, swelling, and the fraction of gas in bubbles in irradiated U3Si2 intermetallic compounds are

compared to measured quantities.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Low-enriched uranium–silicide dispersion fuel is used

extensively worldwide in research and test reactors.

Previous post-irradiation examinations of the material

had indicated that the material remained crystalline to

high fission doses. A model for irradiation-induced

recrystallization of U3Si2 (and UO2) was developed and

successfully applied to the interpretation of the experi-

mental observations [1]. Subsequently, ion irradiation

and neutron diffraction studies [2] did not confirm the

crystalline interpretation, but instead demonstrated that

the as-fabricated crystalline material transformed rap-

idly upon irradiation to an amorphous state and re-

mained thus to extremely high fission doses [3].

In stable intermetallic compounds such as U3Si2 (e.g.,

as compared to compounds such as U3Si that exhibit

unstable swelling behavior), the fission gas bubble
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morphology is uniform with no clear evidence of bubble

coalescence or inter-linkage. The small fission gas bub-

bles remain stable to high burn-up. Even at 63% burn-up

of a 93% enriched mini-plate, the fission gas bubbles

retain a uniform morphology [1].

Two very important observations were made that still

underpin current understanding of the swelling behavior

[1]. Firstly, the initial rate of swelling is relatively low,

and then accelerates markedly. This transition referred

to as the �knee point’ marks the fission density at which
the fission gas bubbles reach a sufficient size to influence

swelling behavior in addition to solid fission products.

Prior to the knee, a small fraction of the fission gas is

retained in solution while the rest is believed to be stored

in nanometer-size bubbles which are below the limit of

resolution of the SEM. Secondly, the fission rate ap-

peared to influence the fission density at which the fuel

swelling began to accelerate. At a higher fission rate the

knee point is shifted to a higher fission density.

The paper is organized as follows. Section 2 contains

the model description. The model consists of a set of rate

equations that are described in Section 2.1 and solved
ed.
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numerically in Section 3 in order to extract time

dependencies. Next analytical approximations are ob-

tained in Section 2.2 in order to facilitate interpretation

of predicted behavior. Section 2.3 contains an evalua-

tion of the steady-state bubble-size distribution in order

to evaluate critical quantities required in the rate-theory

and analytical solution formulations. Finally, Sections

2.4 and 2.5 contain an analysis of bubble growth at and

beyond the knee. Section 3 consists of a comparison of

the theory with data for an U3Si2 intermetallic com-

pound. Discussion and conclusions are presented in

Section 4.
2. Model description

2.1. Constitutive equations

In crystals bubbles cannot form without vacancies.

Vacancy migration leads to bubble growth. This basic

mechanism still holds for amorphous materials. In

amorphous materials fission damage does not produce

vacancies but instead generates free space commonly

called free volume. Fission gas generated during irradi-

ation diffuses by a free volume migration mechanism

and leads to the nucleation and growth of fission gas

bubbles. The diffusivity of the gas in the amorphous

material can be described by a Nernst–Einstein rela-

tionship [4], i.e. the diffusivity is inversely proportional

to the viscosity g,

Dg ¼
kT
6prgg

; ð1Þ

where T is the absolute temperature, k is Boltzmann’s
constant, and rg is the radius of a diffusing gas–atom. A
drastic decrease in the viscosity of a simple glass has

been observed to occur under irradiation by heavy ions

[5,6]. In analogy with mechanical deformation, the vis-

cosity is assumed to have a similar dependence on fission

rate as it has on mechanically induced strain rate, i.e. the

viscosity is inversely proportional to the fission rate _f ,

g ¼ g0= _f ; ð2Þ

where in general g0 is a function of temperature, i.e.
g0 ¼ e�h=T . Eq. (2) is supported by observations of

plastic flow of glasses under bombardment by heavy

ions [6]. Combining Eqs. (1) and (2) results in a gas–

atom diffusivity that is proportional to the fission rate,

i.e.

Dg ¼
kT _f
6prgg0

¼ D0 _f ; ð3Þ

where D0 ¼ D0ðT Þ ¼ kT=6prgg0. Free volume migration
can also result in the movement of small bubbles by a
volume diffusion mechanism. In this case the gas-bubble

diffusivity is given by

Db ¼
3XDg
4pr3b

; ð4Þ

where X is the atomic volume and rb is the bubble ra-
dius.

The bubble nucleation rate is proportional to the

interaction rate between fission gas atoms. In general,

when gas atoms come together at a free volume site in

the amorphous material and form a small cluster,

neighboring host atoms produce interactions with the

cluster that can lead to its dissolution. For example,

consider the mechanism of plastic flow in metallic glas-

ses in which strain is produced by the local rearrange-

ment of atoms nucleated under the applied stress with

the assistance of thermal fluctuations in regions around

free volume sites. Argon named this strain generating

mechanism a local shear transformation [7]. During

these local shear transformations the surrounding atoms

have to be pushed apart at some point along the acti-

vation path, producing an activation dilatation. If the

small gas atom clusters are nearby to the dilatation,

nucleation of a gas bubble can occur. Thus, the bubble

nucleation rate depends on the volume fraction of shear

bands in the material. This condition is analogous to the

requirement in crystalline material that in order to be-

come a stable bubble, the gas atom clusters must be in

close proximity to vacancies and/or vacancy clusters [8].

Bubble nucleation is not considered to occur outside of

the shear bands due to insufficient free volume within

the U3Si2 compound (e.g., U3Si2 contracts upon amor-

phization: see Ref. [2]).

Consider a region of the material initially shearing at

a rate _c0 imposed by some external agency that main-
tains the rate constant. The separation of flow in this

region into shear bands covering a fraction fs of the
volume and the remaining matrix covering a fraction

ð1� fsÞ is described by the equation

fs _cb þ ð1� fsÞ _cm ¼ _c0: ð5Þ

In general, _cm � _c0 � _cb so that solving Eq. (5) for fs
yields

fs �
1

_cb
_c0
�

� _cm
�
� _c0

_cb
¼ a

_f
: ð6Þ

The shear strain rate _cb in Eq. (6) due to mechanical
deformation has been assumed to be proportional to the

fission rate _f , where a is the constant of proportionality.
This last relationship underlies the assumption that there

is a direct correspondence between mechanically induced

and fission-induced processes in the same material (i.e.,

in one the stresses are induced by mechanical deforma-

tion and in the other by fission events).
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Eq. (2) gives the viscosity of an amorphous material

undergoing shear deformation due to fission spikes. We

are concerned here with the behavior of bubble nucle-

ation as a function of fission rate, or analogously, vis-

cosity. As the fission rate increases, the viscosity

decreases and, thus, the shear strain rate within the shear

bands increases. Eq. (6) states that for constant _c0, an
increase in _cb results in a smaller volume fraction of
shear bands in the material.

When gas atoms come together within a free volume

site, a shear force acting to separate the atoms is gen-

erated by the plastic flow of material around the cluster.

These small gas–atom clusters must grow to a critical

size (e.g., on the order of 10 or more gas atoms) in order

to become a stable, equilibrium gas bubble. In analogy

with the theory of viscous adhesion [9], it is assumed that

the probability that the gas–atom cluster stays intact is

proportional to the viscosity. Thus, the bubble nucle-

ation rate is proportional to the viscosity as well as to fs,
i.e.

dcbðtÞ
dt

� fsg; ð7Þ

where cb is the gas-bubble concentration.
As the irradiation continues, the bubble-size distri-

bution coarsens by bubble growth due to the accumu-

lation of fission gas atoms and bubble coalescence. In

addition, bubbles can be totally destroyed (whole bubble

destruction for bubbles below a critical size) by colli-

sions with fission fragments, or have their growth rate

reduced due to the shrinkage effects of irradiation-in-

duced re-solution. With the exception of the bubble

nucleation mechanism given by Eqs. (2) and (7), the

equations describing the time evolution of the fission gas

atoms and bubbles in the amorphous compound are

analogous to the rate equations describing bubble

behavior in a crystalline material [10] and are given by

dcgðtÞ
dt

¼ b _f � 4pfnDgcgðtÞcgðtÞ
_f 2

� 4prbðtÞDgcbðtÞcgðtÞ þ 2bmbðtÞcbðtÞ; ð8Þ
dcbðtÞ
dt

¼ 4pfnDgcgðtÞcgðtÞ
mbðtÞ _f 2

� bcbðtÞ

� 16prbðtÞDbðtÞcbðtÞcbðtÞ; ð9Þ
dmb
dt

¼ 4prbðtÞDgcgðtÞ � bmbðtÞ

þ 16prbðtÞDbðtÞmbðtÞcbðtÞ; ð10Þ

where cg and cb are the concentration of gas atoms and
bubbles, respectively, mb is the number of gas atoms in a
bubble of radius rb, b is the gas–atom re-solution rate,
and fn ¼ 4ag0rg.
The quantities cg, cb, mb in Eqs. (8)–(10) represent
average values. For example, cbðtÞ bubbles each con-
taining mbðtÞ gas atoms represents the average value of
the bubble-size distribution at time t. In general, rb is
related to mb through the gas law and the capillarity
relation. Using the van der Waals gas law,

2c
rb

4

3
pr3b

�
� bvmb

�
¼ mbkT ; ð11Þ

where c is the surface tension, bv is the van der Waals
constant, k is Boltzmann’s constant, and T is the abso-
lute temperature. The four terms on the right-hand-side

of Eq. (8) respectively represent the generation of gas

atoms due to fission (b is the number of gas atoms
produced per fission), the loss of gas atoms due to

bubble nucleation, the loss of gas atoms due to diffusion

to existing bubbles, and the gain of gas atoms due to

irradiation-induced gas–atom re-solution from bubbles.

The three terms on the right-hand-side of Eq. (9)

respectively represent the gain of bubbles due to bubble

nucleation, the loss of bubbles due to whole bubble

destruction by interaction with fission fragments, and

the loss of bubbles due to bubble coalescence. The three

terms on the right-hand-side of Eq. (10) respectively

represent the gain of gas atoms per bubble due to gas

atom diffusion to bubbles, the loss of gas atoms per

bubble due to irradiation-induced re-solution, and the

gain of gas atoms per bubble due to bubble coalescence.

In general, the gas–atom re-solution rate is proportional

to the fission rate, i.e.

b ¼ b0 _f : ð12Þ

Eqs. (8)–(11) can be solved numerically to obtain the

quantities cgðtÞ, cbðtÞ, mbðtÞ, and rbðtÞ. Results obtained
from their solution will be shown in Section 3. However,

it is instructive to qualitatively describe these results in

order to obtain approximate analytical solutions to

these equations.

Due to the strong effect of irradiation-induced gas–

atom re-solution, in the absence of geometrical contact

the bubbles stay in the nanometer size range. The den-

sity of bubbles increases rapidly early in the irradiation.

Subsequently, at longer times the increase in bubble

concentration occurs at a much-reduced rate at the rel-

atively low irradiation temperatures under consideration

(T=Tm < 0:5).
Eventually, the bubble distribution reaches a point

where larger bubbles from the tail of the distribution

begin to contact the more numerous smaller bubbles

from the peak region. This condition defines the knee in

the swelling curve. That these nanometer-sized bubbles

exist and have an evolving size-distribution that is con-

sistent with the above picture is clearly illustrated in Fig.

1 that shows a TEM photograph of bubble formation



Fig. 1. Images taken from an area of a Na–borosilicate glass

sample that was implanted by 50 keV Xe at 200 �C with dif-
ferent doses: (a) 1.0 · 1020 ion/m2; (b) 1.2 · 1020 ion/m2; (c)
1.3· 1020 ion/m2; (d) 1.4 · 1020 ion/m2 [11].

110 J. Rest / Journal of Nuclear Materials 325 (2004) 107–117
and growth in glasses [11]. The validity of an evolving

log normal bubble-size distribution in an irradiated

amorphous material that coarsens by bubbles growing

into each other is further strengthened by the observa-

tion of nanometer sized helium bubbles that form, grow,

and coalesce during low-temperature helium implanta-

tion in an amorphous alloy [12].

2.2. Analytical approximations

Approximate analytical solutions to Eqs. (8)–(11) are

derived in this section in order to facilitate interpretation

of predicted behavior. Based on the argument given

above regarding the much reduced rate of the bubble

density at longer irradiation times, the left-hand-side of

Eq. (9) is set equal to zero and the last term on the right-

hand-side is dropped. Again, this approximation will be

more reasonable for larger values of t. A solution for cb
in terms of mb and t is given by

cb ¼
4pfnD0 _fb2e t

2

b0mbðtÞ
; ð13Þ

where Eqs. (3) and (12), and an approximate solution to

Eq. (8) have been used, i.e.

cg ¼ be _f
3=2t: ð14Þ

The validity of Eq. (14) is examined in Section 3. For

bubbles in the nanometer size range an approximate
solution to Eq. (11) is given by setting the quantity in

brackets equal to zero, i.e.

rbðtÞ ¼
3bvmbðtÞ
4p

� �1=3
: ð15Þ

Using Eq. (15) and neglecting the last term in Eq. (10) an

equation for drb=dt can be written as

drbðtÞ
dt

¼ bvD0 _f 5=2bet
rbðtÞ

� brbðtÞ
3

: ð16Þ

Eq. (16) can be integrated to obtain

rb ¼
3bebvD0 _f

3=2t
b0

 !1=2
; ð17Þ

where Eq. (12) has been utilized. The solution for cb can
now be expressed as

cb ¼
fn
_f 5=4

ffiffiffiffiffiffiffiffiffiffiffiffi
b0bet
3bvD0

s
: ð18Þ

From Eq. (18), the rate of change of cb with respect to t
is proportional to t�1=2. Thus, dcb=dt decreases as t in-
creases. The approximation used in obtaining Eq. (18) is

thus reasonable at relatively high values of t.
Bubble nucleation occurs primarily at relatively early

times in the irradiation. Subsequently, coarsening of the

distribution occurs by bubble growth due to accumula-

tion of fission gas atoms that diffuse to the bubbles. At

some point larger bubbles from the tail of the bubble-

size distribution growing will contact smaller bubbles

and a mass coalescence event will be initiated. This point

is defined as the �knee’. This nomenclature comes about
due to the fact that once the mass coalescence event has

taken place the swelling curve will show an increase in

slope as a function of dose. For a homogeneous, iso-

tropic distribution of spherical bubbles, contact is

achieved when the ratio of the bubble diameter to inter-

bubble spacing is equal to one. For bubble distributions

that are not homogeneous and/or for bubbles that are

not spherical, contact is achieved for values of this ratio

less than one. The ratio of bubble diameter to inter-

bubble spacing is given by

Rds ¼ 2rbc1=3b : ð19Þ

Using Eqs. (17) and (18), Eq. (19) becomes

Rds ¼ 2
3fnD0b

2
e
_f bvt2

b0

" #1=3
: ð20Þ

Defining the value of this ratio at which the knee is

reached as Rcritds , the fission density at which the threshold
achieved is obtained by solving for _f t in Eq. (20) and is
given by
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ð _f tÞknee ¼
b0

24fnD0bv

� �1=2 ffiffiffi
_f

q
be

ðRcritds Þ
3=2

; ð21Þ

where Rcritds is a property of the bubble-size distribution.
The fraction of fission gas generated that exists in

bubbles is given approximately by

vðtÞ ¼ mbðtÞcbðtÞ
b _f t

: ð22Þ

Using Eqs. (15), (17), and (18), Eq. (22) becomes

vðtÞ ¼ 4pfnD0b
2
e t

b0b
: ð23Þ

The value of v at ð _f tÞknee is given by

vknee ¼
4pfnb

2
eD0ð _f tÞknee
b0b _f

: ð24Þ

In terms of Rcritds , Eq. (24) becomes

vknee ¼
2pbe Rcritds

� �3=2
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fnD0
6 _f bvb0

s
: ð25Þ

2.3. Determination of Rcrit
ds

2.3.1. Calculation of the bubble-size distribution

The knee in the swelling curve has been ascribed in

the model described above to the regime wherein the

interconnection of the nanometer size bubble population

occurs. As the dynamics of bubble interconnection de-

pend, in general, on the characteristics of the bubble-size

distribution it is first necessary to obtain an expression

for this quantity.

Let nðrÞdr be the number of bubbles per unit volume
with radii in the range r to r þ dr. Growth by gas atom
collection removes bubbles from this size range, but

these are replaced by the simultaneous growth of smaller

bubbles. A differential growth rate between bubbles of

different size leads to a net rate of increase in the con-

centration of bubbles in the size range r to r þ dr. This
behavior is expressed by [13]

dnðrÞ
dt

� �
dr ¼ d

dr
nðrÞ dr

dt

� �
dr: ð26Þ

The growth rate (dr=dt) of a particular bubble is related
to the rate (dm=dt) at which it absorbs gas from the

matrix. The rate of precipitation is controlled by the

gas–atom diffusion coefficient Dg and the average con-
centration cg of fission gas retained in the lattice,

ðdm=dtÞ ¼ 4pDgrcg: ð27Þ

For small bubbles, the relationship between size and gas

content can be approximated by

mðrÞ ¼ ð4pr3=3bvÞ: ð28Þ
Differentiating Eq. (28) and equating to Eq. (27) results

in

dr=dt ¼ bvDgcg=r: ð29Þ

The rate of bubble shrinkage due to irradiation-induced

re-solution is given by

dnðrÞ
dt

� �
dr ¼ �b0 _f nðrÞdr: ð30Þ

The overall net rate of change of the concentration of

bubbles in a given size range is derived by subtracting

the right-hand-side of Eq. (30) from that of Eq. (26):

dnðrÞ
dt

dr ¼ d

dr
nðrÞdr

dt

� �
dr þ b0 _f nðrÞdr: ð31Þ

The equilibrium population of bubbles is obtained by

setting Eq. (31) to zero

ðbvDgcg=r2ÞnðrÞ � ðbvDgcg=rÞdnðrÞ=dr � b0 _f nðrÞ ¼ 0;
ð32Þ

where Eq. (29) has been used for dr=dt.
Eq. (32) must be solved subject to the relevant bound-

ary condition. Here, because detailed information on

bubble nucleation is not available, a constraint is im-

posed that the total number of gas atoms in the bubbles,

i.e. the integral ofmðrÞnðrÞdr from r0 to infinity is equal to
a given fraction v of the total gas generated during the
time required to reach the knee, i.e. t ¼ tknee andZ 1

r0

mðrÞnðrÞdr ¼ vb _f t; ð33Þ

where b is the number of gas atoms per fission. The
solution to Eq. (32) with the boundary condition given

by Eq. (33) is thus obtained as

nðrÞ ¼ 2bvvb _f t
p3=2

j5=2r exp½�jr2
; ð34Þ

where j ¼ jðtÞ ¼ b0=2bbvDgt and r0 has been taken
equal to zero. The total number of bubbles at the knee is

given by

Ntot ¼
Z 1

0

nðrÞdr ¼
bvvb _f t

� �
knee

p3=2
j3=2: ð35Þ

The average size of a bubble within this distribution is

given by

�r ¼ 1

Ntot

Z 1

0

rnðrÞdr ¼ 1
2

ffiffiffi
p
j

r
: ð36Þ

Finally, the ratio of the average diameter of a bubble to

the average inter-bubble spacing is

Rds ¼ 2�rN 1=3tot ¼ bvvb _f t
� �1=3

¼ vb0
2D0j

� �1=3
: ð37Þ



Table 1

Values of parameters used in calculation for U3Si2

Parameter Value Reference

b 0.25 [8]

be 5.6· 10�12 m3=2 s1=2 This work

b0 2· 10�23 m3 [14]

g0 2· 107 _f0 poise This work

rg 0.216 nm [1]

c 0.7 Jm�2 [15]
_f0 1.25· 1020 m�3 s�1 This work

a 5· 10�10 _f0 This work

bs 1.75· 10�29 m3 This work

/ 8· 10�8 s�1 This work
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2.3.2. Calculation of bubble–bubble contact

As the bubble-size distribution coarsens larger bub-

bles of the distribution intersecting smaller bubbles will

initiate interconnection. This event will lead to a volume

increase due to bubble–bubble coalescence and act as an

initiator of subsequent coalescence events. The overall

process will result in bubble clustering with the eventual

formation of a single large bubble within the localized

fuel volume. In general, interconnection can be de-

scribed as the condition where the average number of

intersections a given bubble makes with other bubbles is

greater or equal to 2. However, for the situation de-

scribed above, due to the volume increase associated

with bubble coalescence the average number of inter-

sections required for the initiation of bubble intercon-

nection can be less then 2.

A spherical bubble of radius R suspended in a system
containing the bubble-size distribution given by Eq. (34)

will be touched by those spheres of radius r whose
centers are less than ðr þ RÞ away from the center of the
sphere under consideration. The mean number of other

spheres I by which the given sphere of radius R is

intersected is therefore equal to the sum over r of the
probability of finding centers of spheres within a volume

of radius ðr þ RÞ, i.e.

IðRÞ ¼ 4p
3

Z 1

0

ðr þ RÞ3nðrÞdr

¼ bvvb _f t
3p1=2

4r
ffiffiffi
j

p
ð3

�
þ jR2Þ þ

ffiffiffi
p

p
ð3þ 6jR2Þ

�
¼ vb0
6p1=2D0j

4r
ffiffiffi
j

p
ð3

�
þ jR2Þ þ

ffiffiffi
p

p
ð3þ 6jR2Þ

�
:

ð38Þ

The purpose of the above formulation is to develop a

relationship between the parameter Rds that is used to set
the position of the knee given by Eq. (21) within the

rate-theory formulation expressed in Eqs. (8)–(10) and

properties of the bubble-size distribution that determine

the onset of interconnection, i.e. as expressed by Eq.

(38). To this end let IðrIÞ be the mean number of other
spheres by which a given sphere of radius rI must
intersect in order to initiate interconnection of the

bubble-size distribution. By definition, this is the knee in

the swelling curve (t ¼ tknee). Solving Eq. (37) for j and
substituting into Eq. (38)

IðrIÞ ¼
R3ds
6p1=2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vb0
D0

r2I
R3ds

s
3

� 
þ vb0
D0R3ds

r2I

�

þ
ffiffiffi
p

p
3

�
þ 6 vb0

D0R3ds
r2I

�!
: ð39Þ

If y ¼ IðrIÞ=r2I and x ¼ r2I=R
3
ds then Eq. (39) can be

rewritten as
y ¼ 1

6p1=2x
4

ffiffiffiffiffiffiffiffiffiffi
vb0
D0

x

s
3

� 
þ vb0

D0
x
�
þ

ffiffiffi
p

p
3

�
þ 6 vb0

D0
x
�!

:

ð40Þ

The expected value of IðrIÞ is of order unity. For a given
rI the intersection of graphs of the left and right side of
Eq. (40) yields the value of Rds. Table 1 shows values of
the parameters used to perform the calculation for U3Si2
intermetallic compound. As discussed in the next sec-

tion, the tail of the lognormal bubble-size distribution

given by Eq. (34) is defined to initiate at a bubble radius

rI ¼ 3:33rpeak. rI is the smallest bubble within the tail
region, and thus, all bubbles within the tail will partic-

ipate in contact coalescence for IðrIÞ ¼ 1. For this value
of rI the solution of Eq. (40) yields a value of Rds ¼ 0:42:
2.4. Bubble growth at the knee

At the knee the larger bubbles within the tail of the

bubble-size distribution begin to contact smaller bubbles

and grow as a result of the coalescence. This growth

facilitates more contact and the process continues until

the density of smaller bubbles is reduced below the value

required for contact. In order to simplify a quantitative

description of this process, the bubble-size distribution is

separated into two regimes characterized by average

radii and number densities: the small bubble bell-shaped

region, and the large bubble tail region. The peak of the

bubble-size distribution given by Eq. (34) occurs at a

bubble radius

rpeak ¼
ffiffiffiffiffiffi
1

2j

r
: ð41Þ

The bubble radius that defines the interface between the

two regions rI (see Fig. 3) is taken to be

rI ¼ 3:33rpeak: ð42Þ
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The tail of the bubble-size distribution is centered at a

bubble radius

rtail ¼ 5rpeak: ð43Þ

The average bubble densities characterizing these two

regions are obtained by integrating Eq. (34) over each

regime to obtain, respectively, the total quantity of gas

in bubbles and choosing number densities of bubbles of

sizes rpeak and rtail, respectively that are consistent with
the conservation of gas atoms, i.e.

N1 ¼
1

mðrpeakÞ

Z rI

0

mðrÞnðrÞdr ¼ 3:6vbvb _f t
j
p

� �3=2
; ð44Þ
Bubble Radius (nm)

Fig. 3. Calculation of average number of intersections of

bubble with radius rI with other bubbles in distribution nðrÞ
shown in Fig. 2. The position of IðrIÞ ¼ 1 is shown and corre-
sponds to the onset of the knee and to the value of Rds ¼ 0:42
obtained from the solution of Eq. (40).
N2 ¼
1

mðrtailÞ

Z 1

rI

mðrÞnðrÞdr ¼ 2� 10�3vbvb _f t
j
p

� �3=2
;

ð45Þ

where the ideal gas law (i.e., neglect second term within

the parenthesis in Eq. (11)) has been used to express mðrÞ
andmðrtailÞ in Eq. (45) in order to simplify the integration.
Fig. 2 shows nðrÞ from Eq. (34) as well as the position

of rpeak, rI, and rtail calculated at the onset of the knee for
a fission rate of 2.5· 1020 m�3 s�1 and using the

parameters in Table 1. The insert in Fig. 2 is a blowup of

the region containing rI and rtail showing details of their
positioning. Fig. 3 shows the calculated (Eq. (39))

average number of intersections of a bubble with radius

rI with other bubbles in distribution nðrÞ shown in Fig.
2. The position of IðrIÞ ¼ 1 is shown and corresponds to
the onset of the knee and to the value of Rds ¼ 0:42
obtained from the solution of Eq. (40).

The coarsening of the larger bubbles in region 2 at

the expense of the smaller bubbles in region 1 is modeled

by an increase in the radius R of a fixed density of N2
bubbles with a commensurate decrease in the density N
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Fig. 2. Calculation of bubble-size distribution showing position

of rpeak, rI and rtail. The inset shows a blowup of the region
containing rI and rtail.
of bubbles having fixed radius rpeak. If the population of
N1 bubbles decreases by DN1 due to coalescence with the
population of N2 bubbles, the number of gas atoms in N2
bubbles increases from mðrpeakÞ to mðobsÞ where

mðobsÞ ¼ mðrtailÞ þ mðrpeakÞDN1=N2: ð46Þ

The bubble density functions nðrÞ, ðrpeak;N1Þ, and
ðrtail;N2Þ represent spatially smeared quantities: the

bubble density is locally high in some regions and locally

low in others. Coalescence at the knee will continue until

all of the locally high bubble density regions are con-

sumed with each local region being replaced by one

bubble containing mðobsÞ gas atoms. At this point the
bubble-size distribution (e.g., Eq. (34)) will represent

the remaining spatial regions. It is assumed here that the

characteristics of the bubble-size distribution are such

that when the locally high-density regions are removed

from the calculation, the average number of intersec-

tions a representative bubble at the interface between the

two regions has with other bubbles (Eq. (38)) is equal to

1/2. This condition constrains the larger bubbles in the

tail to have an average number of intersections with

other bubbles <1, and the contact-coalescence event is

terminated. It follows from Eq. (38) that, in terms of the

average quantities in regions 1 and 2 this condition is

satisfied by

DN1 ¼
N1
2
: ð47Þ
2.5. Bubble growth after the knee

Eqs. (45)–(47) can be solved to obtain the radius of

the large bubble distribution after the coalescence event

at the knee reaches completion, i.e.
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R ¼ 1
2

50

j

�
þ 196pkT

cbvj3=2

�1=2
: ð48Þ

Immediately after knee formation the gas bubble swell-

ing is given by

DV
V0

� �t¼tknee

g

¼ 4p
3

r3peak
N1
2

�
þ R3N2

�
: ð49Þ

Subsequent to the formation of the knee the above

process repeats, but now the evolution of the nanometer

size bubble distribution is overlaid on the pre-existing

larger bubble population. Both bubble distributions

coarsen due to the accumulation of fission gas as the

irradiation proceeds. Eventually, a secondary knee point

is achieved and a second population of bubbles in the

tenths of a micron size range is generated. Thus, as the

population of larger bubbles formed at the primary knee

has coarsened, a bi-modal population of bubbles is ob-

served subsequent to the secondary knee point.

The spatial distribution of larger bubbles formed at the

knee by coalescence of clusters of smaller bubbles growing

into each other mirrors the spatial distribution of the

bubble distribution prior to the knee, but on a larger

length scale. Thus, as the irradiation proceeds, larger

bubbles situated in relatively close proximity will grow

into each other and coalesce. The rate of swelling increases

at the knee due to the large bubble coarsening process.

The large bubble coarsening process is described by

NðtÞ ¼ N2e�/ðt�tkneeÞ; ð50Þ

where the value of the rate constant / is estimated from
the data (see Table 1).

The interpretation provided for Fig. 5 (discussed in

Section 3, below) that the fraction of generated gas in

bubbles remains relatively constant after knee formation

supports the assumption that the generated gas is depleted

initially by the evolving nanometer size bubble distribu-

tion with the remainder available for absorption into the

existing, larger bubble population. Thus, for times t > tknee
the growth of the larger bubbles can be expressed by

dmðtÞ
dt

¼ ½1� vðtÞ
b _f
NðtÞ � mðtÞ

NðtÞ
dNðtÞ
dt

; ð51Þ

where vðtÞ6 vðtkneeÞ.
Eqs. (50) and (51) can be solved to obtain mðtÞ. Thus,

the fuel swelling after knee formation is approximately

given by

DV
V0

� �t>tx

¼ bs _f t þ
2pr3peakN1

3
1

�
þ vðtÞ

vðtkneeÞ

�

þ 3kT
8pc

mobs

 "
þ b _f te/t 1� vðtÞ=2ð Þ

N2

!#1=2
;

ð52Þ
where bs is the fractional swelling due to solid fission
products per unit fission density.
3. Comparison with data

Fig. 4 shows the fission density at which the knee

occurs obtained from a numerical solution of Eqs. (8)–

(11) using Mathematica (http://www.wolfram.com) and

the value of Rds ¼ 0:42 (derived in Section 2.3.2) as a
function of fission rate compared with the experimen-

tally estimated quantities [15]. The uncertainty in the

experimental values is estimated to be ±20%. The results

of Fig. 4 demonstrate that the theory is in agreement

with the trends of the data. The fission density at which

the knee occurs given by the analytical approximation of

Eq. (21) is proportional to the square root of the fission

rate. The analytical solution is also shown in Fig. 4. Eq.

(21) is dependent on the validity of the approximate

solution to Eq. (8) as given by Eq. (14). Fig. 5 shows a

comparison between cg calculated from a numerical

solution to Eqs. (8)–(11) and cg calculated with Eq. (14)
as a function of irradiation time for three values of the

fission rate. Also shown in Fig. 5 is the calculated po-

sition of the knee. It is clear from Fig. 5 that the

approximate solution given by Eq. (14) approaches the

numerical solution at irradiation times near the time

required to achieve the knee. It is also interesting to note

from Fig. 5 that the knee shifts to shorter times (and, as

shown in Fig. 4, higher fission densities) as the fission

rate is increased. Examination of the calculated quanti-

ties in Fig. 5 supports the validity of Eq. (14). Com-

parison of the calculated quantities and the data shown

in Fig. 4 demonstrates that the theory follows the trend

of the observation.

Fig. 6 shows the calculated fraction of generated

gas in SEM-observable bubbles at the knee (i.e.,

http://www.wolfram.com
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Also shown is the calculated position of the knee (arrows).

Calculated Fission Density at Knee (1027m-3)

0 1 2 3 4 5 6

F
ra

ct
io

n 
of

 g
as

 in
 b

ub
bl

es

0.0

0.1

0.2

0.3

0.4

0.5

Theory
Data obtained above knee
Data obtained at knee 

Fig. 6. Calculation of the fraction of generated gas in bubbles

at the knee compared with data taken at various fission densi-

ties.

Table 2

Calculated average bubble diameter and density compared with

data for mini-plate A224 [15]

Bubble diameter

(lm)
Bubble density

(1019 m�3)

Data 0.1 7.5

0.15 0.85

Theory 0.116 7
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Fig. 7. Bubble density calculated using Eq. (50) compared with

data.
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mðobsÞ 
 N2=b _f t) made using Eqs. (22), (41), (43), (45)
and (46) subsequent to the solution of Eqs. (8)–(11)

compared with data taken at various fission densities [15].

The general agreement between the calculated and mea-

sured quantities supports the position that the gas in

bubbles at times subsequent to the formation of the knee

is relatively constant. This situation is possible due to the

presence of the large bubble population formed at the

knee which accumulates the generated gas concurrently

with the evolution of the nanometer sized bubble popu-

lation that inhabits the spaces in between the larger

bubbles.

Table 2 shows the calculated average bubble diame-

ter (Eqs. (11) and (46)) and density (Eq. (45)) at the knee

compared with data for mini-plate A224 [15]. The cal-

culated quantities are in agreement with the measured
values. Fig. 7 shows the calculated bubble density (Eq.

(50)) as a function of fission density compared with data.

The points at the lowest fission density are at the knee,

whereas the other points are beyond the knee. It is

important to note that aside from the time dependence

inherent in Eq. (50), the density of bubbles at the knee

N2 is dependent on the fission rate (N2 increases as the
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fission rate decreases, e.g. see Eq. (45)). The calculated

results plotted in Fig. 7 show that in general, the bubble

density decreases with continued irradiation (i.e., due to

bubble coarsening by bubbles growing into each other)

and follow the trend of the data.

Fig. 8 shows the calculated fuel particle swelling using

Eqs. (49) and (52) for several values of the fission rate

compared with data [15]. As is shown in Fig. 8, the knee

in the swelling curve is defined by the increased slope due

to the formation of the SEM-visible bubbles at the knee.

The calculations shown in Fig. 8 indicate that higher

fission rates result in decreased values of fuel swelling.

The calculated swelling follows the trends of the data.
4. Discussion and conclusions

The fission rate dependence exemplified in Fig. 4

derives primarily from the gas bubble nucleation model

wherein bubble nucleation occurs within shear bands

initiated around free volume regions with small gas–

atom clusters that form within these regions susceptible

to dissolution due to viscous forces. The bubble coars-

ening process depends on the materials viscosity and on

irradiation-induced gas–atom re-solution. For a mate-

rial where bubble growth due to gas atom diffusion

dominates that due to bubble motion and coalescence

(e.g., as occurs in U3Si, see Ref. [15]), the bubble dis-

tribution eventually reaches a point where larger bubbles

from the tail of the evolving lognormal size distribution

begin to contact the more numerous nanometer-sized

bubbles from the peak region. This condition defines the

knee in the swelling curve. Subsequent to the formation

of the knee the above process repeats, but now the

evolution of the nanometer size bubble distribution is

overlaid on the pre-existing larger bubble population.

Both bubble distributions coarsen due to the accumu-

lation of fission gas as the irradiation proceeds. Even-

tually, a secondary knee point is achieved and a second

population of bubbles in the tenths of a micron size

range is generated. Thus, as the population of larger

bubbles formed at the primary knee has coarsened, a bi-

modal population of bubbles is observed subsequent to

the secondary knee point.

The validity of an evolving lognormal bubble-size

distribution in an irradiated amorphous material that

coarsens by bubbles growing into each other supported

by the observation of nanometer sized helium bubbles

that form, grow, and coalesce during low-temperature

helium implantation in an amorphous alloy [12].

The spatial distribution of larger bubbles formed at

the knee by coalescence of clusters of smaller bubbles

growing into each other mirrors the spatial distribution

of the bubble-size distribution prior to the knee, but on a

larger length scale. Thus, as the irradiation proceeds,

larger bubbles situated in relatively close proximity will
grow into each other and coalesce. The rate of swelling

increases at the knee due to the large bubble coarsening

process. The swelling of high enriched U3Si2 interme-

tallic compounds to very high fission density is compli-

cated by the changing chemistry of the material,

specifically the decreasing uranium to silicon ratio.

As the uranium is burned up and the U/Si ratio de-

creases, the gas–atom diffusivity of the material de-

creases (i.e., the viscosity increases) leading to a decrease

in the swelling rate [15]. A quantitative description of

this process is required in order to calculate the swelling

of these materials to very high fission densities (e.g.,

fission densities >6 · 1027 m�3).

The irradiation-induced swelling behavior of an

amorphous material is primarily dependent on the

materials viscosity. For values of the viscosity substan-

tially smaller than that used in this work for the inter-

metallic compound U3Si2 (see Table 1), bubble diffusion

will be fast enough such that bubble coarsening will

occur due to bubble motion (i.e., the last terms on the

right-hand-side of Eqs. (9) and (10) will dominate

behavior) and will pre-empt the formation of a knee. An

example of this type of material is irradiated U3Si [16].
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